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rigid

flexible

Graph + realization in R2 = framework



When does an infinite graph admit

a flexible framework?

Is the given (piece of) Penrose framework flexible?



Definition

A coloring of edges δ : EG → {blue, red} of graph G = (VG ,EG ) is

called a NAC-coloring if it is surjective and for every cycle in G ,

either all edges in the cycle have the same color, or there are at

least two blue and two red edges in the cycle.



Theorem (Grasegger, L., Schicho, 2019)

A connected finite graph admits a flexible framework in the plane if

and only if it has a NAC-coloring.

Theorem (Garamvölgyi, 2022)

The question whether a NAC-coloring exists for a given graph is

NP-complete.

Theorem (Dewar, L., 2021+)

A connected countably infinite graph admits a flexible framework

in the plane if and only if it has a NAC-coloring.





Frameworks consisting of

parallelograms





rigid flexible



Theorem (Bolker, Crapo, 1979)

A finite braced grid of squares is infinitesimally rigid if and only if

the corresponding bracing graph is connected.
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Definition

Consider the relation on the set of edges, where two edges are in

relation if they are opposite edges of a 4-cycle subgraph of G . An

equivalence class of the reflexive-transitive closure of the relation is

called a ribbon.



Definition

A graph G is called ribbon-cutting graph if it is connected and

every ribbon is an edge cut. If ρ : VG → R2 is an injective map

such that each 4-cycle in G forms a parallelogram in ρ, we call the

framework (G , ρ) a P-framework.

Definition

A Penrose framework is the P-framework obtained as the

1-skeleton of a Penrose tiling.



Definition

A NAC-coloring is called cartesian if no two distinct vertices are

connected by a red and blue path simultaneously.



Ribbon-cutting graph Braced P-framework Bracing graph



Theorem (Grasegger, L., 2022)

For a braced finite P-framework (G , ρ), the following statements

are equivalent:

1. (G , ρ) is flexible,

2. G has a cartesian NAC-coloring, and

3. the bracing graph of G is disconnected.



Theorem (Dewar, L., 2021+)

For a braced countably infinite P-framework (G , ρ), the following

statements are equivalent:

1. (G , ρ) is flexible,

2. G has a cartesian NAC-coloring, and

3. the bracing graph of G is disconnected.
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Corollary

Let (G , ρ) be a Penrose framework where we brace every rhombus

in two distinct ribbons. Then (G , ρ) is rigid if and only if the

ribbons “meet” each other.

Corollary

Let (G , ρ) be a Penrose framework where we brace every fat

rhombus with non-zero probability s. Then (G , ρ) is rigid.



Rotationally symmetric P-frameworks

Braced P-framework Bracing graph Quotient bracing graph

2-fold

4-fold



Theorem (Dewar, L., 2021+)

Let (G , ρ) be a braced n-fold rotationally symmetric P-framework

(possibly countably infinite). Then the following are equivalent:

1. There is a non-trivial flex of (G , ρ) that preserves the n-fold

rotational symmetry.

2. There is a cartesian NAC-coloring of G satisfying the

symmetry.

3. The quotient bracing graph of G is disconnected.



Corollary

The 1-skeleton of a Penrose framework with 5-fold rotational

symmetry has a non-trivial flex that preserves 5-fold rotational

symmetry.
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