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Dixon (1900): two constructions of flexible K3,3

Walter and Husty (2007): there is no other one.



Rigidity theory



Definition

A map p : V → R2 for a graph G = (V ,E ) such that p(u) ̸= p(v)

for every edge uv ∈ E is called a quasi-injective realization.

A flex of the framework (G , p) is a continuous path t 7→ pt ,

t ∈ [0, 1), in the space of realizations of G such that p0 = p and

for all t ∈ [0, 1) and all edges uv ∈ E

∥pt(u)− pt(v)∥ = ∥p(u)− p(v)∥ .

The flex is called trivial if the equation above holds for all u, v ∈ V

and all t ∈ [0, 1).

The framework (G , p) is flexible if it has a non-trivial flex.

Otherwise it is called rigid.



Definition

A map p : V → R2 for a graph G = (V ,E ) such that p(u) ̸= p(v)

for every edge uv ∈ E is called a quasi-injective realization.

A flex of the framework (G , p) is a continuous path t 7→ pt ,

t ∈ [0, 1), in the space of realizations of G such that p0 = p and

for all t ∈ [0, 1) and all edges uv ∈ E

∥pt(u)− pt(v)∥ = ∥p(u)− p(v)∥ .

The flex is called trivial if the equation above holds for all u, v ∈ V

and all t ∈ [0, 1).

The framework (G , p) is flexible if it has a non-trivial flex.

Otherwise it is called rigid.



Definition

A map p : V → R2 for a graph G = (V ,E ) such that p(u) ̸= p(v)

for every edge uv ∈ E is called a quasi-injective realization.

A flex of the framework (G , p) is a continuous path t 7→ pt ,

t ∈ [0, 1), in the space of realizations of G such that p0 = p and

for all t ∈ [0, 1) and all edges uv ∈ E

∥pt(u)− pt(v)∥ = ∥p(u)− p(v)∥ .

The flex is called trivial if the equation above holds for all u, v ∈ V

and all t ∈ [0, 1).

The framework (G , p) is flexible if it has a non-trivial flex.

Otherwise it is called rigid.



Definition

A map p : V → R2 for a graph G = (V ,E ) such that p(u) ̸= p(v)

for every edge uv ∈ E is called a quasi-injective realization.

A flex of the framework (G , p) is a continuous path t 7→ pt ,

t ∈ [0, 1), in the space of realizations of G such that p0 = p and

for all t ∈ [0, 1) and all edges uv ∈ E

∥pt(u)− pt(v)∥ = ∥p(u)− p(v)∥ .

The flex is called trivial if the equation above holds for all u, v ∈ V

and all t ∈ [0, 1).

The framework (G , p) is flexible if it has a non-trivial flex.

Otherwise it is called rigid.













Rigidity/flexibility is a generic property in the space of realizations.

→ (generically) rigid/flexible graphs

A graph is minimally rigid if it is rigid and the deletion of any edge

yields a flexible graph.
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Theorem (Pollaczek-Geiringer 1927, Laman 1970)

A graph G = (V ,E ) is minimally rigid if and only if |E | = 2|V | − 3

and |E ′| ≤ 2|V ′| − 3 for every subgraph (V ′,E ′) of G with at least

two vertices.

Pebble game algorithms allow to check the condition above in

polynomial time.



The existence of flexible frameworks



Definition

A coloring of edges δ : E → {blue, red} is called a NAC-coloring, if

it is surjective and for every cycle in G , either all edges in the cycle

have the same color, or there are at least two blue and two red

edges in the cycle.

✓ ✗
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Theorem (Grasegger, L., Schicho, 2019, Dewar, L., 2023)

A connected graph has a quasi-injective flexible realization in the

plane if and only if it has a NAC-coloring.
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Theorem (Garamvölgyi, 2022)

The existence of a NAC-coloring of a graph is NP-complete.

Theorem (Laštovička, L., 2024+)

The existence of a NAC-coloring is NP-complete on graphs with

the maximum degree five, resp. ≤ (2 + ε)|V | edges.
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Minimally rigid graphs

with flexible realizations



Definition

A 2-tree is a graph obtained by adding degree two vertices on

adjacent vertices, starting from an edge.

Theorem

Let G be a minimally rigid graph. The following are equivalent:

1. G has a NAC-colouring,

2. G is not a 2-tree, and

3. G has a flexible quasi-injective realisation in the plane.
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Definition

A stable cut S of a connected graph G is a set of vertices such

that S is stable (independent) and G − S is disconnected.

Theorem (Grasegger, L., Schicho, 2019)

If a connected graph has a stable cut, then it has a NAC-coloring.
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Theorem (Le, Pfender, 2013, Rauch, Rautenbach, 2024+)

Let G = (V ,E ) be a graph such that |E | = 2|V | − 3. Then either

G has a stable cut or G belongs to class G:

1. K2,K3 and the 3-prism are in G, and
2. if G1,G2 ∈ G, then the graph obtained by gluing G1 and G2

along an edge or a 3-cycle is in G.

Theorem (Chen, Yu, 2002)

Every graph with at most 2|V | − 4 edges has a stable cut.
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Stable cuts in flexible graphs



Theorem (Whiteley, 1983)

A graph is rigid in the plane if and only if it is rigid on the sphere.

Theorem (Gallet, Grasegger, L., Schicho, 2021)

A connected graph has a spherical flexible realisation on the sphere

if and only if it has a stable cut.

Corollary

Every flexible graph has a stable cut.
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Theorem (Chen, Yu, 2002)

Every 2-connected graph with at most 2|V | − 4 edges has a stable

cut which avoids a given vertex.

Theorem

Let G be a 2-connected flexible graph.

Suppose u, v are two

vertices of G such that no rigid component of G contains both of

them. Then there is a stable cut S of G that separates u and v.

Moreover, every rigid component of G contains at most one vertex

of S. In particular,

G has a stable cut that avoids a given vertex.

It can be found in time O(|V |3).
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Number of NAC-colorings



Definition

Let NAC#(G ) be the number of NAC-colorings of G divided by 2.

Lemma

Let G be a 2-connected flexible graph with m rigid components.

Then

NAC#(G ) ≥ max{3, ⌈log2m⌉} .

Theorem

Let G be any graph on n vertices. Then

NAC#(G ) ≤
(
2n − 5

n − 2

)
∼ 22n−5

√
πn

.
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� If T is an n-vertex tree, then NAC#(T ) = 2n−2 − 1.

� If Cn is the n-vertex cycle, then NAC#(Cn) = 2n−1 − (n + 1).

� If Kn1,n2 is the complete bipartite graph on n1 + n2 vertices,

then NAC#(Kn1,n2) = 2n1+n2−2 − 1.

� If Gk is the minimally rigid graph below with n = 2k + 2

vertices, then NAC#(Gk) = 2n−4 − 1.
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The maximum NAC#(·) among minimally rigid graphs on 11 and

12 vertices is 638 and 1461 respectively.





Lemma

Let G be a graph obtained by gluing k copies of a graph H along

an edge. Then

NAC#(G ) = (NAC#(H) + 1)k − 1 = (NAC#(H) + 1)
|V (G)|−2
|V (H)|−2 − 1 .



Corollary

There is an infinite family of minimally rigid graphs Hk such that

NAC#(Hk) = ω
(
2.13|V (Hk )|

)
.

18-vertex minimally-rigid graph H with NAC#(H) = 180 607,

computed using code by Petr Laštovička.



Python package for rigidity and flexibility of bar-joint frameworks

https://pyrigi.github.io/PyRigi/

https://pyrigi.github.io/PyRigi/


Open problems



� Minimally rigid graphs G with NAC#(G ) = 1.

� NAC-colorings/stable cuts of graphs with 2|V | − 2 edges.

� The asymptotic behavior of NAC#(·).
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Thank you

jan.legersky@fit.cvut.cz

jan.legersky.cz

mailto:jan.legersky@fit.cvut.cz
https://jan.legersky.cz
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