Flexible and Rigid Labelings of Graphs

Jan Legerský

RISC JKU Linz, Austria

Doctoral thesis defense
July 2, 2019
Outline

- Existence of Flexible Labelings
- Movable Graphs
- On the Classification of Motions
- Number of Real Realizations compatible with a Rigid Labeling
Outline

- Existence of Flexible Labelings
- Movable Graphs
- On the Classification of Motions
- Number of Real Realizations compatible with a Rigid Labeling
Outline

- Existence of Flexible Labelings
- Movable Graphs
- On the Classification of Motions

- Number of Real Realizations compatible with a Rigid Labeling
Outline

- **Existence of Flexible Labelings**

- **Movable Graphs**

- **On the Classification of Motions**

- **Number of Real Realizations compatible with a Rigid Labeling**
Outline

- Existence of Flexible Labelings

- Movable Graphs

- On the Classification of Motions

- Number of Real Realizations compatible with a Rigid Labeling
Let $\lambda : E_G \to \mathbb{R}_+$ be an edge labeling of a graph $G = (V_G, E_G)$. A realization $\rho : V_G \to \mathbb{R}^2$ is compatible with λ if $\|\rho(u) - \rho(v)\| = \lambda(uv)$ for all edges uv in E_G. The labeling λ is called

- proper flexible if there are infinitely many non-congruent injective compatible realizations,
- rigid if the number of non-congruent compatible realizations is positive and finite.

A graph is called movable if it has a proper flexible labeling.
Let $\lambda : E_G \rightarrow \mathbb{R}_+$ be an edge labeling of a graph $G = (V_G, E_G)$.

A realization $\rho : V_G \rightarrow \mathbb{R}^2$ is compatible with λ if

$$\|\rho(u) - \rho(v)\| = \lambda(uv)$$

for all edges uv in E_G.

The labeling λ is called

- **flexible** if there are infinitely many non-congruent compatible realizations, or
- **rigid** if the number of non-congruent compatible realizations is positive and finite.
Flexible and rigid labelings

Let $\lambda : E_G \to \mathbb{R}_+$ be an edge labeling of a graph $G = (V_G, E_G)$. A realization $\rho : V_G \to \mathbb{R}^2$ is compatible with λ if $\|\rho(u) - \rho(v)\| = \lambda(uv)$ for all edges uv in E_G.

The labeling λ is called

- **proper flexible** if there are infinitely many non-congruent injective compatible realizations, or
- **rigid** if the number of non-congruent compatible realizations is positive and finite.

A graph is called *movable* if it has a proper flexible labeling.
Algebraic formulation

\[(x_u, y_u) = (0, 0)\]

\[(x_v, y_v) = (\lambda (u\bar{v}), 0)\]

\[(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda (uv)^2, \quad \forall uv \in E_G\]
Algebraic formulation

\[(x_\bar{u}, y_\bar{u}) = (0, 0)\]

\[(x_\bar{v}, y_\bar{v}) = (\lambda(\bar{u}\bar{v}), 0)\]

\[(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(\bar{u}\bar{v})^2, \quad \forall \ uv \in E_G\]

- only isolated solutions \(\implies\) \(\lambda\) is rigid,
Algebraic formulation

\[(x_u, y_u) = (0, 0)\]
\[(x_v, y_v) = (\lambda(\bar{u}\bar{v}), 0)\]
\[(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(uv)^2, \quad \forall uv \in E_G\]

- only isolated solutions \(\implies\) \(\lambda\) is rigid,
- infinitely many solutions \(\implies\) \(\lambda\) is flexible,
Algebraic formulation

\[(x_\bar{u}, y_\bar{u}) = (0, 0)\]
\[(x_\bar{v}, y_\bar{v}) = (\lambda(\bar{u}\bar{v}), 0)\]
\[(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(uv)^2, \quad \forall\ uv \in E_G\]

- only isolated solutions \(\implies\) \(\lambda\) is rigid,
- infinitely many solutions \(\implies\) \(\lambda\) is flexible,
- infinitely many solutions such that
 \[(x_u - x_v)^2 + (y_u - y_v)^2 \neq 0, \quad \forall\ uv \notin E\]
 \(\implies\) \(\lambda\) is proper flexible,
Algebraic formulation

\[(x_u, y_u) = (0, 0)\]
\[(x_v, y_v) = (\lambda(\bar{u}\bar{v}), 0)\]
\[(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(\bar{u}\bar{v})^2, \quad \forall \ uv \in E_G\]

- only isolated solutions \(\implies\) \(\lambda\) is rigid,
- infinitely many solutions \(\implies\) \(\lambda\) is flexible,
- infinitely many solutions such that
 \[(x_u - x_v)^2 + (y_u - y_v)^2 \neq 0\]
 \(\implies\) \(\lambda\) is proper flexible,

A 1-dimensional irreducible subset of the zero set is called an **algebraic motion**.
Laman graphs

Definition
A graph \(G \) is called Laman if \(|E_G| = 2|V_G| - 3 \), and \(|E_H| \leq 2|V_H| - 3 \) for every subgraph \(H \) of \(G \).

Theorem (Pollaczeck-Geiringer, Laman)
A labeling of a graph \(G \) induced by a generic realization of \(G \) is rigid if and only if \(G \) is spanned by a Laman graph.
Laman graphs

Definition
A graph G is called *Laman* if $|E_G| = 2|V_G| - 3$, and $|E_H| \leq 2|V_H| - 3$ for every subgraph H of G.

Theorem (Pollaczek-Geiringer, Laman)
A labeling of a graph G induced by a generic realization of G is rigid if and only if G is spanned by a Laman graph.

Are there any Laman graphs with a (proper) flexible labeling?
Existence of Flexible Labelings
Definition
A coloring of edges \(\delta : E_G \rightarrow \{\text{blue, red}\} \) is called a \textit{NAC-coloring}, if it is surjective and for every cycle in \(G \), either all edges in the cycle have the same color, or there are at least two blue and two red edges in the cycle.
Combinatorial characterization

Theorem (GLS)
A connected graph with at least one edge has a flexible labeling if and only if it has a NAC-coloring.
Theorem (GLS)

A connected graph with at least one edge has a flexible labeling if and only if it has a NAC-coloring.
Theorem (GLS)

A connected graph with at least one edge has a flexible labeling if and only if it has a NAC-coloring.
Combinatorial characterization

Theorem (GLS)

A connected graph with at least one edge has a flexible labeling if and only if it has a NAC-coloring.
Theorem (GLS)

A connected graph with at least one edge has a flexible labeling if and only if it has a NAC-coloring.
Theorem (GLS)

A connected graph with at least one edge has a flexible labeling if and only if it has a NAC-coloring.
Theorem (GLS)
A connected graph with at least one edge has a flexible labeling if and only if it has a NAC-coloring.
Combinatorial characterization

Theorem (GLS)

A connected graph with at least one edge has a flexible labeling if and only if it has a NAC-coloring.

⇒ no flexible labeling
Grid construction
Example

1,6,9
Grid construction II
Example II
Functions $W_{u,v}$ and $Z_{u,v}$

\[
\lambda_{uv}^2 = (x_v - x_u)^2 + (y_v - y_u)^2
= \left((x_v - x_u) + i(y_v - y_u) \right) \left((x_v - x_u) - i(y_v - y_u) \right)
= W_{u,v} \cdot Z_{u,v}
\]
Functions $W_{u,v}$ and $Z_{u,v}$

$$\lambda_{uv}^2 = (x_v - x_u)^2 + (y_v - y_u)^2$$

$$= ((x_v - x_u) + i(y_v - y_u))((x_v - x_u) - i(y_v - y_u))$$

For every cycle $(u_1, \ldots, u_n, u_{n+1} = u_1)$:

$$\sum_{i=1}^{n} W_{u_i, u_{i+1}} = 0 \text{ and } \sum_{i=1}^{n} Z_{u_i, u_{i+1}} = 0$$
Functions $W_{u,v}$ and $Z_{u,v}$

\[
\lambda_{uv}^2 = (x_v - x_u)^2 + (y_v - y_u)^2 \\
= \underbrace{((x_v - x_u) + i(y_v - y_u))}_{W_{u,v}} \underbrace{((x_v - x_u) - i(y_v - y_u))}_{Z_{u,v}}
\]

For every cycle $(u_1, \ldots, u_n, u_{n+1} = u_1)$:

\[
\sum_{i=1}^{n} W_{u_i, u_{i+1}} = 0 \quad \text{and} \quad \sum_{i=1}^{n} Z_{u_i, u_{i+1}} = 0
\]

For a valuation $\nu : F(C) \to \mathbb{Z}$ trivial on C:

- $\nu(W_{u,v}Z_{u,v}) = \nu(\lambda_{uv}^2)$
Functions $W_{u,v}$ and $Z_{u,v}$

\[\lambda_{uv}^2 = (x_v - x_u)^2 + (y_v - y_u)^2 \]
\[= ((x_v - x_u) + i(y_v - y_u))((x_v - x_u) - i(y_v - y_u)) \]

For every cycle $(u_1, \ldots, u_n, u_{n+1} = u_1)$:

\[\sum_{i=1}^{n} W_{u_i, u_{i+1}} = 0 \quad \text{and} \quad \sum_{i=1}^{n} Z_{u_i, u_{i+1}} = 0 \]

For a valuation $\nu : F(C) \to \mathbb{Z}$ trivial on C:

- $\nu(W_{u,v}Z_{u,v}) = \nu(\lambda_{uv}^2) = 0$
Functions $W_{u,v}$ and $Z_{u,v}$

\[\lambda_{uv}^2 = (x_v - x_u)^2 + (y_v - y_u)^2 = (W_{u,v} + i(Z_{u,v})) (W_{u,v} - i(Z_{u,v})) \]

For every cycle $(u_1, \ldots, u_n, u_{n+1} = u_1)$:

\[\sum_{i=1}^{n} W_{u_i, u_{i+1}} = 0 \quad \text{and} \quad \sum_{i=1}^{n} Z_{u_i, u_{i+1}} = 0 \]

For a valuation $\nu : F(C) \to \mathbb{Z}$ trivial on C:

- $\nu(W_{u,v}) + \nu(Z_{u,v}) = \nu(W_{u,v}Z_{u,v}) = \nu(\lambda_{uv}^2) = 0$
Functions $W_{u,v}$ and $Z_{u,v}$

\[
\lambda_{uv}^2 = (x_v - x_u)^2 + (y_v - y_u)^2
\]

\[
= \underbrace{((x_v - x_u) + i(y_v - y_u))}^{W_{u,v}} \underbrace{((x_v - x_u) - i(y_v - y_u))}^{Z_{u,v}}
\]

For every cycle $(u_1, \ldots, u_n, u_{n+1} = u_1)$:

\[
\sum_{i=1}^{n} W_{u_i,u_{i+1}} = 0 \quad \text{and} \quad \sum_{i=1}^{n} Z_{u_i,u_{i+1}} = 0
\]

For a valuation $\nu : F(C) \to \mathbb{Z}$ trivial on \mathbb{C}:

- $\nu(W_{u,v}) + \nu(Z_{u,v}) = \nu(W_{u,v}Z_{u,v}) = \nu(\lambda_{uv}^2) = 0$, and
- $W_{u_1,u_n} = \sum_{i=1}^{n-1} W_{u_i,u_{i+1}}$
Functions $W_{u,v}$ and $Z_{u,v}$

\[
\lambda_{uv}^2 = (x_v - x_u)^2 + (y_v - y_u)^2 = \left((x_v - x_u) + i(y_v - y_u)\right)\left((x_v - x_u) - i(y_v - y_u)\right)
\]

For every cycle $(u_1, \ldots, u_n, u_{n+1} = u_1)$:

\[
\sum_{i=1}^{n} W_{u_i,u_{i+1}} = 0 \quad \text{and} \quad \sum_{i=1}^{n} Z_{u_i,u_{i+1}} = 0
\]

For a valuation $\nu : F(\mathbb{C}) \to \mathbb{Z}$ trivial on \mathbb{C}:

1. $\nu(W_{u,v}) + \nu(Z_{u,v}) = \nu(W_{u,v}Z_{u,v}) = \nu(\lambda_{uv}^2) = 0$, and
2. $\nu(W_{u_1,u_n}) = \nu(\sum_{i=1}^{n-1} W_{u_i,u_{i+1}}) \geq \min_{i \in \{1, \ldots, n-1\}} \nu(W_{u_i,u_{i+1}})$.
Active NAC-colorings

Lemma (GLS)

Let \mathcal{C} be an algebraic motion of (G, λ). If $\alpha \in \mathbb{Q}$ and ν is a valuation of $F(\mathcal{C})$ trivial on \mathbb{C} such that there exist edges $\overline{u\nu}, \hat{u}\hat{v}$ with $\nu(W_{\overline{u},\overline{v}}) = \alpha$ and $\nu(W_{\hat{u},\hat{v}}) > \alpha$, then $\delta : E_G \to \{\text{red, blue}\}$ given by

\[
\delta(uv) = \text{red} \iff \nu(W_{u,v}) > \alpha,
\]
\[
\delta(uv) = \text{blue} \iff \nu(W_{u,v}) \leq \alpha.
\]

is a NAC-coloring, called active.
Movable Graphs
Lemma (GLS)

Let G be a graph and $u, v \in V_G$ be such that $uv \notin E_G$. If there exists a uv-path P in G such that P is unicolor for all NAC-colorings of G, then G is movable if and only if $G' = (V_G, E_G \cup \{uv\})$ is movable.
Lemma (GLS)

Let G be a graph and $u, v \in V_G$ be such that $uv \notin E_G$. If there exists a uv-path P in G such that P is unicolor for all NAC-colorings of G, then G is movable if and only if $G' = (V_G, E_G \cup \{uv\})$ is movable.
Lemma (GLS)

Let G be a graph and $u, v \in V_G$ be such that $uv \notin E_G$. If there exists a uv-path P in G such that P is unicolor for all NAC-colorings of G, then G is movable if and only if $G' = (V_G, E_G \cup \{uv\})$ is movable.
Lemma (GLS)

Let G be a graph and $u, v \in V_G$ be such that $uv \notin E_G$. If there exists a uv-path P in G such that P is unicolor for all NAC-colorings of G, then G is movable if and only if $G' = (V_G, E_G \cup \{uv\})$ is movable.
Lemma (GLS)

Let G be a graph and $u, v \in V_G$ be such that $uv \notin E_G$. If there exists a uv-path P in G such that P is unicolor for all NAC-colorings of G, then G is movable if and only if $G' = (V_G, E_G \cup \{uv\})$ is movable.
Theorem (GLS)

The maximal movable graphs with at most 8 vertices that are spanned by a Laman graph and have no vertex of degree two are the following: $K_{3,3}, K_{3,4}, K_{3,5}, K_{4,4}$ or
Embedding in \mathbb{R}^3

Lemma (GLS)

If there exists an injective realization of G in \mathbb{R}^3 such that every edge is parallel to one of the four vectors $(1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, -1, -1)$, then G is movable.
Lemma (GLS)

If there exists an injective realization of G in \mathbb{R}^3 such that every edge is parallel to one of the four vectors $(1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, -1, -1)$, then G is movable.

Moreover, there exists an algebraic motion of G with exactly two active NAC-colorings. Two edges are parallel in the embedding ω if and only if they receive the same pair of colors in the two active NAC-colorings.
On the Classification of Motions
Classification of motions

Dixon (1899), Walter and Husty (2007)
Classification of motions

Dixon (1899), Walter and Husty (2007)
Active NAC-colorings of quadrilaterals

<table>
<thead>
<tr>
<th>Quadrilateral</th>
<th>Motion</th>
<th>Active NAC-colorings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhombus</td>
<td>parallel</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>degenerate</td>
<td>□ resp. □</td>
</tr>
<tr>
<td>Parallelogram</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Antiparallelogram</td>
<td>nondegenerate</td>
<td>□ □</td>
</tr>
<tr>
<td>Deltoid</td>
<td>nondegenerate</td>
<td>□ □ □</td>
</tr>
<tr>
<td></td>
<td>degenerate</td>
<td>□</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td>□ □ □ □</td>
</tr>
</tbody>
</table>
Active NAC-colorings of quadrilaterals

<table>
<thead>
<tr>
<th>Quadrilateral</th>
<th>Motion</th>
<th>Active NAC-colorings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhombus</td>
<td>parallel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>degenerate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>resp.</td>
<td></td>
</tr>
<tr>
<td>Parallelogram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiparallelogram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltoid</td>
<td>nondegenerate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>degenerate</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assume a valuation that gives only one active NAC-coloring \implies Laurent series parametrization.

For every cycle $C = (u_1, \ldots, u_n, u_{n+1} = u_1)$:

$$\sum_{i \in \{1, \ldots, n\}} (w_{u_i u_{i+1}} t + \text{h.o.t.}) \quad + \quad \sum_{i \in \{1, \ldots, n\}} (w_{u_i u_{i+1}} + \text{h.o.t.}) = 0.$$
Assume a valuation that gives only one active NAC-coloring \implies Laurent series parametrization.

For every cycle $C = (u_1, \ldots, u_n, u_{n+1} = u_1)$:

$$\sum_{i \in \{1, \ldots, n\} \atop \delta(u_i u_{i+1}) = \text{blue}} w_{u_i u_{i+1}} = 0.$$
Assume a valuation that gives only one active NAC-coloring \implies Laurent series parametrization.

For every cycle $C = (u_1, \ldots, u_n, u_{n+1} = u_1)$:

$$\sum_{i \in \{1, \ldots, n\}} \delta(u_i u_{i+1}) = \text{red}(w_{u_i u_{i+1}}) + \sum_{i \in \{1, \ldots, n\}} \delta(u_i u_{i+1}) = \text{blue} w_{u_i u_{i+1}} = 0.$$

For all $uv \in E_G$:

$$w_{uv} z_{uv} = \lambda_{uv}^2.$$

\implies elimination using Gröbner basis provides an equation in λ_{uv}'s.
If a valuation yields two active NAC-colorings δ, δ', then the set $\{(\delta(e), \delta'(e)) : e \in E_G\}$ has 3 elements.
Triangle in Q_1

\[
\implies \lambda_5^2 r^2 + \lambda_6^2 s^2 + (\lambda_5^2 - \lambda_5^2 - \lambda_6^2) rs = 0,
\]

\[
r = \lambda_2^2 - \lambda_2^2, \quad s = \lambda_2^2 - \lambda_2^2
\]
Triangle in Q_1

\[\lambda^2_{57} r^2 + \lambda^2_{67} s^2 + (\lambda^2_{56} - \lambda^2_{57} - \lambda^2_{67}) rs = 0, \]

\[r = \lambda^2_{24} - \lambda^2_{23}, \quad s = \lambda^2_{14} - \lambda^2_{13} \]

Considering the equation as a polynomial in r, the discriminant is

\[(\lambda_{56} + \lambda_{57} + \lambda_{67})(\lambda_{56} + \lambda_{57} - \lambda_{67})(\lambda_{56} - \lambda_{57} + \lambda_{67})(\lambda_{56} - \lambda_{57} - \lambda_{67}) s^2. \]
Triangle in Q_1

$$\Rightarrow \lambda_{57}^2 r^2 + \lambda_{67}^2 s^2 + (\lambda_{56}^2 - \lambda_{57}^2 - \lambda_{67}^2) rs = 0,$$

$$r = \lambda_{24}^2 - \lambda_{23}^2, \ s = \lambda_{14}^2 - \lambda_{13}^2$$

Considering the equation as a polynomial in r, the discriminant is

$$(\lambda_{56} + \lambda_{57} + \lambda_{67})(\lambda_{56} + \lambda_{57} - \lambda_{67})(\lambda_{56} - \lambda_{57} + \lambda_{67})(\lambda_{56} - \lambda_{57} - \lambda_{67})s^2.$$

Theorem (GLS)

The vertices 5, 6 and 7 are collinear for every proper flexible labeling of $Q_1.

22
Lemma (GLS)

If there is an active NAC-coloring δ of an algebraic motion of (G, λ) such that a 4-cycle $(1, 2, 3, 4)$ is blue and there are red paths from 1 to 3 and from 2 to 4, then

$$\lambda_{12}^2 + \lambda_{34}^2 = \lambda_{23}^2 + \lambda_{14}^2,$$

namely, the 4-cycle $(1, 2, 3, 4)$ has orthogonal diagonals.
Theorem (GLS)

Let \mathcal{C} be an algebraic motion of (G, λ) with the set of active NAC-colorings N. There exist $\mu_\delta \in \mathbb{Z}_{\geq 0}$ for all NAC-colorings δ of G such that:

1. $\mu_\delta \neq 0$ if and only if $\delta \in N$, and

2. for every 4-cycle (V_i, E_i) of G, there exists a positive integer d_i such that

$$\sum_{\substack{\delta \in \text{NAC}_G \\delta|_{E_i} = \delta'}} \mu_\delta = d_i \quad \text{for all } \delta' \in \{\delta|_{E_i} : \delta \in N\}.$$
Theorem (GLS)

Let \mathcal{C} be an algebraic motion of (G, λ) with the set of active NAC-colorings N. There exist $\mu_\delta \in \mathbb{Z}_{\geq 0}$ for all NAC-colorings δ of G such that:

1. $\mu_\delta \neq 0$ if and only if $\delta \in N$, and
2. for every 4-cycle (V_i, E_i) of G, there exists a positive integer d_i such that

$$\sum_{\delta \in \text{NAC}_G} \mu_\delta = d_i \quad \text{for all } \delta' \in \{\delta|_{E_i} : \delta \in N\}.$$

$$\begin{align*}
p &= \{\begin{array}{c}
\end{array}\}, & o &= \{\begin{array}{c}
\end{array}, \begin{array}{c}
\end{array}\}, & g &= \{\begin{array}{c}
\end{array}, \begin{array}{c}
\end{array}, \begin{array}{c}
\end{array}\}, \\
a &= \{\begin{array}{c}
\end{array}, \begin{array}{c}
\end{array}\}, & e &= \{\begin{array}{c}
\end{array}, \begin{array}{c}
\end{array}\}.
\end{align*}$$
Example

\[\begin{align*}
\epsilon_{13} & = \mu_{\eta} = 0 \\
\epsilon_{14} & = \mu_{\psi_1} \\
\epsilon_{23} & = \mu_{\psi_2} \\
\epsilon_{24} & = \mu_{\phi_3} \\
\gamma_1 & = \mu_{\phi_4} \\
\gamma_2 & = \zeta
\end{align*} \]
Example

Antiparallelogram $\left(\begin{smallmatrix} \epsilon_1 \epsilon_2 \\ \eta \psi_1 \end{smallmatrix}\right) \Rightarrow$
Example

Antiparallelogram \((\square, \square)\) \(\implies\)

\[\mu_{\epsilon_{13}} = \mu_{\gamma_1} = \mu_\eta = 0\]
Antiparallelogram \(\square \leftrightarrow \square \) \(\implies \)

\[
\mu_{\epsilon_{13}} = \mu_{\gamma_1} = \mu_{\eta} = 0
\]

\[
\mu_{\epsilon_{14}} + \mu_{\psi_1}
\]
Example

Antiparallelogram $\left(\square, \square\right)$ \implies

$$\mu_{\epsilon_{13}} = \mu_{\gamma_1} = \mu_\eta = 0$$

$$\mu_{\epsilon_{14}} + \mu_{\psi_1} = \mu_{\epsilon_{23}} + \mu_{\gamma_2} + \mu_{\phi_3} + \mu_\zeta$$
Classification of motions

- Find all possible types of motions of quadrilaterals with consistent μ_δ’s

Implementation – SageMath package FlexRiLoG (https://github.com/Legersky/flexrilog)
Classification of motions

- Find all possible types of motions of quadrilaterals with consistent μ_δ’s
- Remove combinations with coinciding vertices (due to edge lengths, perpendicular diagonals)

Implementation – SageMath package FlexRiLoG (https://github.com/Legersky/flexrilog)
Classification of motions

- Find all possible types of motions of quadrilaterals with consistent μ_δ's
- Remove combinations with coinciding vertices (due to edge lengths, perpendicular diagonals)
- Identify symmetric cases

Implementation – SageMath package FlexRiLoG (https://github.com/Legersky/flexrilog)
Classification of motions

- Find all possible types of motions of quadrilaterals with consistent μ_δ’s
- Remove combinations with coinciding vertices (due to edge lengths, perpendicular diagonals)
- Identify symmetric cases
- Compute necessary conditions for λ_{uv}’s using leading coefficient systems

Implementation – SageMath package FlexRiLoG (https://github.com/Legersky/flexrilog)
Classification of motions

- Find all possible types of motions of quadrilaterals with consistent μ_δ’s
- Remove combinations with coinciding vertices (due to edge lengths, perpendicular diagonals)
- Identify symmetric cases
- Compute necessary conditions for λ_{uv}’s using leading coefficient systems
- Check if there is a proper flexible labeling satisfying the necessary conditions
Classification of motions

- Find all possible types of motions of quadrilaterals with consistent μ_δ’s
- Remove combinations with coinciding vertices (due to edge lengths, perpendicular diagonals)
- Identify symmetric cases
- Compute necessary conditions for λ_{uv}’s using leading coefficient systems
- Check if there is a proper flexible labeling satisfying the necessary conditions

Implementation – SageMath package FlexRiLoG
(https://github.com/Legersky/flexrilog)
Classification of motions of $K_{3,3}$

<table>
<thead>
<tr>
<th>4-cycles</th>
<th>active NAC-colorings</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>gggggggggg</td>
<td>NAC${K{3,3}}$</td>
<td>1</td>
</tr>
<tr>
<td>oooogggggg</td>
<td>{\epsilon_{12}, \epsilon_{23}, \epsilon_{34}, \epsilon_{14}, \epsilon_{16}, \epsilon_{36}, \omega_1, \omega_3}</td>
<td>6</td>
</tr>
<tr>
<td>pooggogge</td>
<td>{\epsilon_{12}, \epsilon_{23}, \epsilon_{34}, \epsilon_{14}}</td>
<td>9</td>
</tr>
<tr>
<td>pggagagggg</td>
<td>{\epsilon_{12}, \epsilon_{34}, \omega_5, \omega_6}</td>
<td>18</td>
</tr>
</tbody>
</table>

![Graphs showing different motions of $K_{3,3}$](image)
Classification of motions of Q_1

<table>
<thead>
<tr>
<th>4-cycles</th>
<th>active NAC-colorings</th>
<th>#</th>
<th>type</th>
<th>dim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pggpgpgg</td>
<td>{\epsilon_{13}, \epsilon_{24}, \eta}</td>
<td>2</td>
<td>I</td>
<td>4</td>
</tr>
<tr>
<td>poapope</td>
<td>{\epsilon_{13}, \eta}</td>
<td>4</td>
<td>$\subset I, IV_-, V, VI$</td>
<td>2</td>
</tr>
<tr>
<td>peepapa</td>
<td>{\epsilon_{13}, \epsilon_{24}}</td>
<td>2</td>
<td>$\subset I, II, III$</td>
<td>2</td>
</tr>
<tr>
<td>ogggggggg</td>
<td>{\epsilon_{ij}, \gamma_1, \gamma_2, \psi_1, \psi_2}</td>
<td>1</td>
<td>$II_- \cup II_+$</td>
<td>5</td>
</tr>
<tr>
<td>peegggg</td>
<td>{\epsilon_{13}, \epsilon_{14}, \epsilon_{23}, \epsilon_{24}}</td>
<td>1</td>
<td>$\subset II_-, II_+$</td>
<td>4</td>
</tr>
<tr>
<td>oggpgga</td>
<td>{\epsilon_{13}, \epsilon_{24}, \gamma_1, \psi_2}</td>
<td>4</td>
<td>$\subset II_-$</td>
<td>3</td>
</tr>
<tr>
<td>oggegge</td>
<td>{\epsilon_{13}, \epsilon_{23}, \gamma_1, \gamma_2}</td>
<td>2</td>
<td>$\subset II_-, \text{deg.}$</td>
<td>2</td>
</tr>
<tr>
<td>ogggaga</td>
<td>{\epsilon_{13}, \epsilon_{24}, \psi_1, \psi_2, \zeta}</td>
<td>2</td>
<td>III</td>
<td>3</td>
</tr>
<tr>
<td>ggapgggg</td>
<td>{\epsilon_{13}, \eta, \phi_4, \psi_2}</td>
<td>4</td>
<td>$IV_- \cup IV_+$</td>
<td>4</td>
</tr>
<tr>
<td>ggaegpe</td>
<td>{\epsilon_{13}, \eta, \gamma_2, \phi_3}</td>
<td>4</td>
<td>V</td>
<td>3</td>
</tr>
<tr>
<td>pggegge</td>
<td>{\epsilon_{13}, \epsilon_{23}, \eta, \zeta}</td>
<td>2</td>
<td>VI</td>
<td>3</td>
</tr>
</tbody>
</table>
Number of Real Realizations compatible with a Rigid Labeling
How many realizations of a Laman graph are compatible with a given rigid labeling?

\[(x_u, y_u) = (0, 0)\]
\[(x_v, y_v) = (\lambda(\bar{u} \bar{v}), 0)\]
\[(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(\bar{u} \bar{v})^2, \quad \forall \ uv \in E_G\]
Number of real realizations

How many realizations of a Laman graph are compatible with a given rigid labeling?

\[
(x_u, y_u) = (0, 0) \\
(x_v, y_v) = (\lambda(\bar{u}\bar{v}), 0) \\
(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(\bar{u}\bar{v})^2, \quad \forall \ uv \in E_G
\]

\[\implies \text{Bounded by the number of the complex solutions.}\]
Number of real realizations

How many realizations of a Laman graph are compatible with a given rigid labeling?

\[(x_{\bar{u}}, y_{\bar{u}}) = (0, 0)\]
\[(x_{\bar{v}}, y_{\bar{v}}) = (\lambda(\bar{u}\bar{v}), 0)\]
\[(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(\bar{u}\bar{v})^2, \quad \forall uv \in E_G\]

\[\implies\text{ Bounded by the number of the complex solutions.}\]

Goal — specify edge lengths with many real solutions.
Laman graphs with many real realizations

- 6 vertices: Borcea and Streinu ’04
- 7 vertices: Emiris and Moroz ’11
- Capco, Gallet, Grasegger, Koutschan, Lubbes and Schicho ’18

<table>
<thead>
<tr>
<th># vertices</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
</tr>
<tr>
<td>maximum ((C))</td>
<td>24</td>
<td>56</td>
<td>136</td>
<td>344</td>
<td>880</td>
<td>2288</td>
<td>6180</td>
</tr>
<tr>
<td>maximum ((R))</td>
<td>24</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Laman graphs with many real realizations

- 6 vertices: Borcea and Streinu ’04
- 7 vertices: Emiris and Moroz ’11
- Capco, Gallet, Grasegger, Koutschan, Lubbes and Schicho ’18

<table>
<thead>
<tr>
<th># vertices</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
</tr>
<tr>
<td>maximum (ℂ)</td>
<td>24</td>
<td>56</td>
<td>136</td>
<td>344</td>
<td>880</td>
<td>2288</td>
<td>6180</td>
</tr>
<tr>
<td>maximum (ℝ)</td>
<td>24</td>
<td>56</td>
<td>136</td>
<td>344</td>
<td>≥ 860</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
3D – Geiringer graphs

- 6 vertices: Emiris, Tsigaridas and Varvitsiotis ’13
- Grasegger, Koutschan, Tsigaridas ’18

<table>
<thead>
<tr>
<th># vertices</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum ((\mathbb{C}))</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>48</td>
<td>76</td>
</tr>
<tr>
<td>maximum ((\mathbb{C}))</td>
<td>16</td>
<td>48</td>
<td>160</td>
<td>640</td>
<td>2560</td>
</tr>
<tr>
<td>maximum ((\mathbb{R}))</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3D – Geiringer graphs

- 6 vertices: Emiris, Tsigaridas and Varvitsiotis ’13
- Grasegger, Koutschan, Tsigaridas ’18

<table>
<thead>
<tr>
<th># vertices</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum (C)</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>48</td>
<td>76</td>
</tr>
<tr>
<td>maximum (C)</td>
<td>16</td>
<td>48</td>
<td>160</td>
<td>640</td>
<td>2560</td>
</tr>
<tr>
<td>maximum (R)</td>
<td>16</td>
<td>48</td>
<td>≥ 132</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

\[G_{3,7}^{\text{max}} \]

\[G_{3,8}^{\text{max}} \]
Removing an edge uc yields a flexible structure.

The curve traced by the vertex c is called a *coupler curve*.
Removing an edge uc yields a flexible structure.

The curve traced by the vertex c is called a *coupler curve*.
Example
Example
Summary
Future work and open questions

- Existence of Flexible Labelings
- Movable Graphs
- On the Classification of Motions
- Number of Real Realizations compatible with a Rigid Labeling
Future work and open questions

- Existence of Flexible Labelings
 - NAC-colorings of Laman graphs
 - NAC-colorings yielding proper flexible labelings
- Movable Graphs
- On the Classification of Motions
- Number of Real Realizations compatible with a Rigid Labeling
Future work and open questions

- **Existence of Flexible Labelings**
 - NAC-colorings of Laman graphs
 - NAC-colorings yielding proper flexible labelings

- **Movable Graphs**
 - Necessary and sufficient condition

- **On the Classification of Motions**

- **Number of Real Realizations compatible with a Rigid Labeling**
Future work and open questions

- Existence of Flexible Labelings
 - NAC-colorings of Laman graphs
 - NAC-colorings yielding proper flexible labelings
- Movable Graphs
 - Necessary and sufficient condition
- On the Classification of Motions
 - Other graphs than Q_1
- Number of Real Realizations compatible with a Rigid Labeling
Future work and open questions

- Existence of Flexible Labelings
 - NAC-colorings of Laman graphs
 - NAC-colorings yielding proper flexible labelings
- Movable Graphs
 - Necessary and sufficient condition
- On the Classification of Motions
 - Other graphs than Q_1
- Number of Real Realizations compatible with a Rigid Labeling
 - Larger graphs, better bounds
Future work and open questions

- Existence of Flexible Labelings
 - NAC-colorings of Laman graphs
 - NAC-colorings yielding proper flexible labelings

- Movable Graphs
 - Necessary and sufficient condition

- On the Classification of Motions
 - Other graphs than Q_1

- Number of Real Realizations compatible with a Rigid Labeling
 - Larger graphs, better bounds

- Realizations on the Sphere
 - NAP-colorings, classification of motions of $K_{3,3}$
Thank you

jan.legersky@risc.jku.at
jan.legersky.cz