$\mathcal{C}_n$-symmetric NAC-colorings¶
This class implements a NAC-coloring of a graph with a symmetry.
CnSymmetricNACcoloring¶
-
class
flexrilog.symmetric_NAC_coloring.
CnSymmetricNACcoloring
(G, coloring, name=None, check=True)[source]¶ Bases:
flexrilog.NAC_coloring.NACcoloring
The class for a $\mathcal{C}_n$-symmetric NAC-coloring of a $\mathcal{C}_n$-symmetric graph.
We define a NAC-coloring $\delta$ to be a $\mathcal{C}_n$-symmetric if
- $\delta(\omega e)$ = $\delta(e)$ for all $e in E_G$, where $\omega$ generates $\mathcal{C}_n$, and
- no two distinct blue, resp. red, partially invariant components are connected by an edge.