# -*- coding: utf-8 -*-
r"""
This module implements the functionality for determining possible motions of a graph.
Methods
-------
{INDEX_OF_METHODS}
AUTHORS:
- Jan Legerský (2019-02-18): initial version
- Jan Legerský (2020-03-12): update to SageMath 9.0
MotionClassifier
----------------
"""
from sage.misc.rest_index_of_methods import doc_index, gen_thematic_rest_table_index
#Copyright (C) 2018 Jan Legerský
#
#This program is free software: you can redistribute it and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation, either version 3 of the License, or
#(at your option) any later version.
#
#This program is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.
#
#You should have received a copy of the GNU General Public License
#along with this program. If not, see <https://www.gnu.org/licenses/>.
from sage.all import Graph, Set, Subsets, deepcopy#,, find_root ceil, sqrt, matrix, copy,
from sage.all import SageObject, PolynomialRing, QQ, flatten, ideal, sgn
from sage.all import table, show, factor, latex
#from sage.all import vector, matrix, sin, cos, pi, var, RR, floor, tan
#from sage.all import FunctionField, QQ, sqrt, function
from sage.misc.rest_index_of_methods import gen_rest_table_index
from sage.rings.integer import Integer
_sage_const_3 = Integer(3); _sage_const_2 = Integer(2); _sage_const_1 = Integer(1);
#_sage_const_0 = Integer(0); _sage_const_6 = Integer(6); _sage_const_5 = Integer(5);
#_sage_const_4 = Integer(4); _sage_const_13 = Integer(13); _sage_const_12 = Integer(12)
#from sage.rings.rational import Rational
from .flexible_rigid_graph import FlexRiGraph
from collections import Counter
from IPython.core.display import display
[docs]class MotionClassifier(SageObject):
r"""
This class implements the functionality for determining possible motions of a graph.
"""
def __init__(self, graph, four_cycles=[], separator='', edges_ordered=[]):
if not (isinstance(graph, FlexRiGraph) or 'FlexRiGraph' in str(type(graph))):
raise TypeError('The graph must be of the type FlexRiGraph.')
self._graph = graph
if four_cycles == []:
self._four_cycles = self._graph.four_cycles(only_with_NAC=True)
else:
self._four_cycles = four_cycles
if not self._graph.are_NAC_colorings_named():
self._graph.set_NAC_colorings_names()
# -----Polynomial Ring for leading coefficients-----
ws = []
zs = []
lambdas = []
ws_latex = []
zs_latex = []
lambdas_latex = []
if edges_ordered==[]:
edges_ordered = self._graph.edges(labels=False)
else:
if (Set([self._edge2str(e) for e in edges_ordered]) !=
Set([self._edge2str(e) for e in self._graph.edges(labels=False)])):
raise ValueError('The provided ordered edges do not match the edges of the graph.')
for e in edges_ordered:
ws.append('w' + self._edge2str(e))
zs.append('z' + self._edge2str(e))
lambdas.append('lambda' + self._edge2str(e))
ws_latex.append('w_{' + self._edge2str(e).replace('_', separator) + '}')
zs_latex.append('z_{' + self._edge2str(e).replace('_', separator) + '}')
lambdas_latex.append('\\lambda_{' + self._edge2str(e).replace('_', separator) + '}')
self._ringLC = PolynomialRing(QQ, names=lambdas+ws+zs) #, order='lex')
self._ringLC._latex_names = lambdas_latex + ws_latex + zs_latex
self._ringLC_gens = self._ringLC.gens_dict()
self._ring_lambdas = PolynomialRing(QQ, names=lambdas + ['u'])
self._ring_lambdas._latex_names = lambdas_latex + ['u']
self._ring_lambdas_gens = self._ring_lambdas.gens_dict()
self.aux_var = self._ring_lambdas_gens['u']
xs = []
ys = []
xs_latex = []
ys_latex = []
for v in self._graph.vertices():
xs.append('x' + str(v))
ys.append('y' + str(v))
xs_latex.append('x_{' + str(v) + '}')
ys_latex.append('y_{' + str(v) + '}')
self._ring_coordinates = PolynomialRing(QQ, names=lambdas+xs+ys)
self._ring_coordinates._latex_names = lambdas_latex + xs_latex + ys_latex
self._ring_coordinates_gens = self._ring_coordinates.gens_dict()
# ----Ramification-----
# if len(self._graph.NAC_colorings()) > 1:
self._ring_ramification = PolynomialRing(QQ,
[col.name() for col in self._graph.NAC_colorings()],
len(self._graph.NAC_colorings()))
# else:
# self._ring_ramification = PolynomialRing(QQ, self._graph.NAC_colorings()[0].name())
self._ring_ramification_gens = self._ring_ramification.gens_dict()
self._restriction_NAC_types = self.NAC_coloring_restrictions()
# -----Graph of 4-cycles-----
self._four_cycle_graph = Graph([self._four_cycles,[]], format='vertices_and_edges')
for c1, c2 in Subsets(self._four_cycle_graph.vertices(), 2):
intersection = self.cycle_edges(c1, sets=True).intersection(self.cycle_edges(c2, sets=True))
if len(intersection)>=2 and len(intersection[0].intersection(intersection[1]))==1:
common_vert = intersection[0].intersection(intersection[1])[0]
self._four_cycle_graph.add_edge(c1, c2, common_vert)
# -----Cycle with orthogonal diagonals due to NAC-----
self._orthogonal_diagonals = {
delta.name(): [cycle for cycle in self._four_cycle_graph if delta.cycle_has_orthogonal_diagonals(cycle)]
for delta in self._graph.NAC_colorings()}
[docs] @doc_index("Constraints on edge lengths")
def four_cycles_ordered(self):
r"""
Heuristic order of 4-cycles.
"""
cliques = self._four_cycle_graph.cliques_maximal()
cycles = max(cliques,
key=lambda clique: sum([self._four_cycle_graph.degree(v) for v in clique]))
missing_cliques = {tuple(clique):0 for clique in cliques}
missing_cliques.pop(tuple(cycles))
while missing_cliques:
next_clique = max(missing_cliques.keys(),
key=lambda clique:sum([1 for c in clique for c2 in self._four_cycle_graph.neighbors(c) if c2 in cycles]))
missing_cliques.pop(next_clique)
missing_cycles = {c:0 for c in next_clique if not c in cycles}
while missing_cycles:
next_cycle = max(missing_cycles.keys(),
key=lambda c:sum([1 for c2 in self._four_cycle_graph.neighbors(c) if c2 in cycles]))
cycles.append(next_cycle)
missing_cycles.pop(next_cycle)
missing_cycles = {c:0 for c in self._four_cycle_graph.vertices() if not c in cycles}
while missing_cycles:
next_cycle = max(missing_cycles.keys(),
key=lambda c:sum([1 for c2 in self._four_cycle_graph.neighbors(c) if c2 in cycles]))
cycles.append(next_cycle)
missing_cycles.pop(next_cycle)
return cycles
def _repr_(self):
return 'Motion Classifier of ' + str(self._graph)
@staticmethod
def _edge2str(e):
if e[0]<e[1]:
return str(e[0]) + '_' + str(e[1])
else:
return str(e[1]) + '_' + str(e[0])
[docs] @staticmethod
@doc_index("Other")
def cycle_edges(cycle, sets=False):
r"""
Return edges of a 4-cycle.
"""
if sets:
return Set([Set(list(e)) for e in zip(cycle, list(cycle[1:])+[cycle[0]])])
else:
return [list(e) for e in zip(cycle, list(cycle[1:])+[cycle[0]])]
[docs] @staticmethod
@doc_index("Other")
def normalized_motion_types(motion_types):
r"""
Return motion types in the normal form.
"""
res = {}
for c, t in motion_types.items():
norm_c, norm_t = MotionClassifier.four_cycle_normal_form(c, t)
res[norm_c] = norm_t
return res
def _w(self, e):
if e[0] < e[1]:
return self._ringLC_gens['w'+self._edge2str(e)]
else:
return -self._ringLC_gens['w'+self._edge2str(e)]
def _z(self, e):
if e[0] < e[1]:
return self._ringLC_gens['z'+self._edge2str(e)]
else:
return -self._ringLC_gens['z'+self._edge2str(e)]
def _lam(self, e):
return self._ringLC_gens['lambda'+self._edge2str(e)]
[docs] @doc_index("Constraints on edge lengths")
def lam(self, u,v):
r"""
Return the variable for edge length in the ring of edge lengths.
"""
return self._ring_lambdas_gens['lambda'+self._edge2str([u,v])]
[docs] @doc_index("Motion types consistent with 4-cycles")
def mu(self, delta):
r"""
Return the variable for a given NAC-coloring.
"""
if type(delta)==str:
return self._ring_ramification_gens[delta]
else:
return self._ring_ramification_gens[delta.name()]
[docs] @doc_index("System of equations for coordinates")
def x(self, v):
r"""
Return the variable for x coordinate of a vertex.
"""
return self._ring_coordinates_gens['x'+str(v)]
[docs] @doc_index("System of equations for coordinates")
def y(self, v):
r"""
Return the variable for y coordinate of a vertex.
"""
return self._ring_coordinates_gens['y'+str(v)]
[docs] @doc_index("System of equations for coordinates")
def l(self, u,v):
r"""
Return the variable for edge length in the ring with coordinates.
"""
return self._ring_coordinates_gens['lambda'+self._edge2str([u,v])]
[docs] @doc_index("Constraints on edge lengths")
def equations_from_leading_coefs(self, delta, extra_eqs=[], check=True):
r"""
Return equations for edge lengths from leading coefficients system.
EXAMPLES::
sage: from flexrilog import GraphGenerator, MotionClassifier
sage: K33 = GraphGenerator.K33Graph()
sage: M = MotionClassifier(K33)
sage: M.equations_from_leading_coefs('epsilon56')
[lambda1_2^2 - lambda1_4^2 - lambda2_3^2 + lambda3_4^2]
::
sage: M.equations_from_leading_coefs('omega1')
Traceback (most recent call last):
...
ValueError: The NAC-coloring must be a singleton.
::
sage: M.equations_from_leading_coefs('omega1', check=False)
[lambda2_5^2*lambda3_4^2 - lambda2_5^2*lambda3_6^2 - lambda2_3^2*lambda4_5^2 + lambda3_6^2*lambda4_5^2 + lambda2_3^2*lambda5_6^2 - lambda3_4^2*lambda5_6^2]
"""
if type(delta) == str:
delta = self._graph.name2NAC_coloring(delta)
if check:
if not delta.is_singleton():
raise ValueError('The NAC-coloring must be a singleton.')
eqs_lengths=[]
for e in self._graph.edges():
eqs_lengths.append(self._z(e)*self._w(e) - self._lam(e)**_sage_const_2)
eqs_w=[]
eqs_z=[]
for T in self._graph.spanning_trees():
for e in self._graph.edges():
eqw = 0
eqw_all = 0
eqz = 0
eqz_all = 0
path = T.shortest_path(e[0],e[1])
for u,v in zip(path, path[1:]+[path[0]]):
if delta.is_red(u,v):
eqz+=self._z([u,v])
else:
eqw+=self._w([u,v])
eqw_all+=self._w([u,v])
eqz_all+=self._z([u,v])
if eqw:
eqs_w.append(eqw)
else:
eqs_w.append(eqw_all)
if eqz:
eqs_z.append(eqz)
else:
eqs_z.append(eqz_all)
equations = (ideal(eqs_w).groebner_basis()
+ ideal(eqs_z).groebner_basis()
+ eqs_lengths
+ [self._ringLC(eq) for eq in extra_eqs])
return [self._ring_lambdas(eq)
for eq in ideal(equations).elimination_ideal(flatten(
[[self._w(e), self._z(e)] for e in self._graph.edges()])).basis
]
@staticmethod
def _pair_ordered(u,v):
if u<v:
return (u, v)
else:
return (v, u)
@staticmethod
def _edge_ordered(u,v):
return MotionClassifier._pair_ordered(u, v)
# @staticmethod
def _set_two_edge_same_lengths(self, H, u, v, w, y, k):
if H[self._edge_ordered(u,v)]==None and H[self._edge_ordered(w,y)]==None:
H[self._edge_ordered(u,v)] = k
H[self._edge_ordered(w,y)] = k
return 1
elif H[self._edge_ordered(u,v)]==None:
H[self._edge_ordered(u,v)] = H[self._edge_ordered(w,y)]
return 0
elif H[self._edge_ordered(w,y)]==None:
H[self._edge_ordered(w,y)] = H[self._edge_ordered(u,v)]
return 0
elif H[self._edge_ordered(u,v)]!=H[self._edge_ordered(w,y)]:
col= H[self._edge_ordered(u,v)]
for u,v in H.keys():
if H[(u,v)]==col:
H[(u,v)] = H[self._edge_ordered(w,y)]
return 0
return 0
def _set_same_lengths(self, H, types):
for u,v in H.keys():
H[(u,v)] = None
k=1
for c in types:
motion = types[c]
if motion=='a' or motion=='p':
k += self._set_two_edge_same_lengths(H, c[0], c[1], c[2], c[3], k)
k += self._set_two_edge_same_lengths(H, c[1], c[2], c[0], c[3], k)
elif motion=='o':
k += self._set_two_edge_same_lengths(H, c[0], c[1], c[1], c[2], k)
k += self._set_two_edge_same_lengths(H, c[2], c[3], c[0], c[3], k)
elif motion=='e':
k += self._set_two_edge_same_lengths(H, c[1], c[2], c[2], c[3], k)
k += self._set_two_edge_same_lengths(H, c[0], c[1], c[0], c[3], k)
[docs] @doc_index("Constraints on edge lengths")
def motion_types2same_edge_lenghts(self, motion_types):
r"""
Return the dictionary of same edge lengths enforced by given motion types.
"""
H = {self._edge_ordered(u,v):None for u,v in self._graph.edges(labels=False)}
self._set_same_lengths(H, motion_types)
return H
[docs] @doc_index("Motion types consistent with 4-cycles")
def NAC_coloring_restrictions(self):
r"""
Return types of restrictions of NAC-colorings to 4-cycles.
EXAMPLE::
sage: from flexrilog import MotionClassifier, GraphGenerator
sage: MC = MotionClassifier(GraphGenerator.K33Graph())
sage: MC.NAC_coloring_restrictions()
{(1, 2, 3, 4): {'L': ['omega3', 'omega1', 'epsilon36', 'epsilon16'],
'O': ['epsilon34', 'epsilon14', 'epsilon23', 'epsilon12'],
'R': ['omega4', 'epsilon45', 'omega2', 'epsilon25']},
...
(3, 4, 5, 6): {'L': ['omega5', 'omega3', 'epsilon25', 'epsilon23'],
'O': ['epsilon56', 'epsilon36', 'epsilon45', 'epsilon34'],
'R': ['omega6', 'epsilon16', 'omega4', 'epsilon14']}}
"""
res = {cycle:{'O':[], 'L':[], 'R':[]} for cycle in self._four_cycles}
for delta in self._graph.NAC_colorings():
for cycle in self._four_cycles:
colors = [delta.color(e) for e in self.cycle_edges(cycle)]
if colors[0]==colors[1]:
if colors[0]!=colors[2]:
res[cycle]['R'].append(delta.name())
elif colors[1]==colors[2]:
res[cycle]['L'].append(delta.name())
else:
res[cycle]['O'].append(delta.name())
return res
[docs] @staticmethod
@doc_index("Other")
def motion_types2NAC_types(m):
r"""
Return NAC-coloring types for a given motion type.
"""
if m=='g':
return ['L','R','O']
if m=='a':
return ['L','R']
if m=='p':
return ['O']
if m=='e':
return ['R','O']
if m=='o':
return ['L','O']
[docs] @staticmethod
@doc_index("Other")
def NAC_types2motion_type(t):
r"""
Return the motion type for given types of NAC-colorings.
"""
if Set(t)==Set(['L','R','O']):
return 'g'
if Set(t)==Set(['L','R']):
return 'a'
if Set(t)==Set(['O']):
return 'p'
if Set(t)==Set(['R','O']):
return 'e'
if Set(t)==Set(['L','O']):
return 'o'
[docs] @doc_index("Other")
def active_NACs2motion_types(self, active):
r"""
Return the motion types of 4-cycles for a given set of active NAC-colorings.
"""
motion_types = {cycle:[] for cycle in self._four_cycles}
for delta in active:
if type(delta)!=str:
delta = delta.name()
for cycle in motion_types:
motion_types[cycle] += [t for t, colorings
in self._restriction_NAC_types[cycle].items()
if delta in colorings]
for cycle in motion_types:
motion_types[cycle] = self.NAC_types2motion_type(motion_types[cycle])
return motion_types
@staticmethod
def _same_edge_lengths(K, edges_to_check):
if edges_to_check:
length = K[MotionClassifier._edge_ordered(edges_to_check[0][0], edges_to_check[0][1])]
if length==None:
return False
for u,v in edges_to_check:
if length!=K[MotionClassifier._edge_ordered(u,v)]:
return False
return True
else:
return True
[docs] @doc_index("Motion types consistent with 4-cycles")
def consequences_of_nonnegative_solution_assumption(self, eqs):
r"""
Return equations implied by the assumption of the existence of nonnegative solutions.
"""
n_zeros_prev = -1
zeros = []
gb = eqs
while n_zeros_prev!=len(zeros):
n_zeros_prev = len(zeros)
gb = self._ring_ramification.ideal(gb + zeros).groebner_basis()
# gb = self._ring_ramification.ideal(gb + zeros).groebner_basis()
zeros = []
for eq in gb:
coefs = eq.coefficients()
if sum([sgn(a)*sgn(b) for a,b in zip(coefs[:-1],coefs[1:])])==len(coefs)-1:
zeros += eq.variables()
return [zeros, gb]
# @staticmethod
# def consequences_of_nonnegative_solution_assumption(eqs):
# n_zeros_prev = -1
# zeros = {}
# gb = ideal(eqs).groebner_basis()
# while n_zeros_prev!=len(zeros):
# n_zeros_prev = len(zeros)
# gb = [eq.substitute(zeros) for eq in gb if eq.substitute(zeros)!=0]
# for eq in gb:
# coefs = eq.coefficients()
# if sum([sgn(a)*sgn(b) for a,b in zip(coefs[:-1],coefs[1:])])==len(coefs)-1:
# for zero_var in eq.variables():
# zeros[zero_var] = 0
# return [zeros.keys(), gb]
[docs] @doc_index("Motion types consistent with 4-cycles")
def consistent_motion_types(self):#, cycles=[]):
r"""
Return the list of motion types consistent with 4-cycles.
"""
# if cycles==[]:
cycles = self.four_cycles_ordered()
k23s = [Graph(self._graph).subgraph(k23_ver).edges(labels=False) for k23_ver in self._graph.induced_K23s()]
aa_pp = [('a', 'a'), ('p', 'p')]
ao = [('a','o'), ('o','a')]
ae = [('a','e'), ('e','a')]
oe = [('o', 'e'), ('e', 'o')]
oo_ee = [('e','e'), ('o','o')]
H = {self._edge_ordered(u,v):None for u,v in self._graph.edges(labels=False)}
types_prev=[[{}, []]]
self._num_tested_combinations = 0
for i, new_cycle in enumerate(cycles):
types_ext = []
new_cycle_neighbors = [[c2,
new_cycle.index(self._four_cycle_graph.edge_label(new_cycle, c2)),
c2.index(self._four_cycle_graph.edge_label(new_cycle, c2)),
] for c2 in self._four_cycle_graph.neighbors(new_cycle) if c2 in cycles[:i]]
for types_original, ramification_eqs_prev in types_prev:
for type_new_cycle in ['g','a','p','o','e']:
self._num_tested_combinations +=1
types = deepcopy(types_original)
types[tuple(new_cycle)] = type_new_cycle
# H = deepcopy(orig_graph)
inconsistent = False
for c2, new_index, c2_index in new_cycle_neighbors:
type_pair = (types[new_cycle], types[c2])
if (type_pair in aa_pp
or (type_pair in oe and new_index%2 == c2_index%2)
or (type_pair in oo_ee and new_index%2 != c2_index%2)):
inconsistent = True
break
if type_pair in ao:
ind_o = type_pair.index('o')
if [new_index, c2_index][ind_o] % 2 == 1:
# odd deltoid (1,2,3,4) is consistent with 'a' if the common vertex is odd,
# but Python lists are indexed from 0
inconsistent = True
break
if type_pair in ae:
ind_e = type_pair.index('e')
if [new_index, c2_index][ind_e] % 2 == 0:
inconsistent = True
break
if inconsistent:
continue
self._set_same_lengths(H, types)
for c in types:
if types[c]=='g':
labels = [H[self._edge_ordered(c[i-1],c[i])] for i in range(0,4)]
if (not None in labels
and ((len(Set(labels))==2 and labels.count(labels[0])==2)
or len(Set(labels))==1)):
inconsistent = True
break
if inconsistent:
continue
for K23_edges in k23s:
if MotionClassifier._same_edge_lengths(H, K23_edges):
inconsistent = True
break
if inconsistent:
continue
ramification_eqs = ramification_eqs_prev + self.ramification_formula(new_cycle, type_new_cycle)
zero_variables, ramification_eqs = self.consequences_of_nonnegative_solution_assumption(ramification_eqs)
for cycle in types:
if inconsistent:
break
for t in self.motion_types2NAC_types(types[cycle]):
has_necessary_NAC_type = False
for delta in self._restriction_NAC_types[cycle][t]:
if not self.mu(delta) in zero_variables:
has_necessary_NAC_type = True
break
if not has_necessary_NAC_type:
inconsistent = True
break
if inconsistent:
continue
types_ext.append([types, ramification_eqs])
types_prev=types_ext
return [t for t, _ in types_prev]
[docs] @doc_index("Other")
def active_NAC_coloring_names(self, motion_types):
r"""
Return the names of active NAC-colorings for given motion types.
"""
return [delta.name() for delta in self.motion_types2active_NACs(motion_types)]
[docs] @doc_index("Motion types consistent with 4-cycles")
def motion_types2active_NACs(self, motion_types):
r"""
Return the active NAC-colorings for given motion types, if uniquely determined.
"""
zeros, eqs = self.consequences_of_nonnegative_solution_assumption(
flatten([self.ramification_formula(c, motion_types[c]) for c in motion_types]))
if self._ring_ramification.ideal(eqs).dimension()==1:
return [delta for delta in self._graph.NAC_colorings() if not self.mu(delta) in zeros]
else:
raise NotImplementedError('There might be more solutions (dim '+str(
self._ring_ramification.ideal(eqs).dimension()) + ')')
[docs] @doc_index("General methods")
def motion_types_equivalent_classes(self, motion_types_list):
r"""
Split a list of motion types into isomorphism classes.
"""
aut_group = self._graph.automorphism_group()
classes = [
[( motion_types_list[0],
self.normalized_motion_types( motion_types_list[0]),
Counter([('d' if t in ['e','o'] else t) for c, t in motion_types_list[0].items()]))]
]
for next_motion in motion_types_list[1:]:
added = False
next_sign = Counter([('d' if t in ['e','o'] else t) for c, t in next_motion.items()])
for cls in classes:
repr_motion_types = cls[0][1]
if cls[0][2]!=next_sign:
continue
for sigma in aut_group:
next_motion_image = self.normalized_motion_types({tuple(sigma(v) for v in c): t
for c,t in next_motion.items()})
for c in repr_motion_types:
if repr_motion_types[c]!=next_motion_image[c]:
break
else:
cls.append([next_motion])
added = True
break
# if not False in [repr_motion_types[c]==next_motion_image[c] for c in repr_motion_types]:
# cls.append(next_motion)
# added = True
# break
if added:
break
else:
classes.append([(next_motion, self.normalized_motion_types(next_motion), next_sign)])
return [[t[0] for t in cls] for cls in classes]
[docs] @doc_index("General methods")
def check_orthogonal_diagonals(self, motion_types, active_NACs, extra_cycles_orthog_diag=[]):
r"""
Check the necessary conditions for orthogonal diagonals.
TODO:
return orthogonality_graph
"""
perp_by_NAC = [cycle for delta in active_NACs for cycle in self._orthogonal_diagonals[delta]]
deltoids = [cycle for cycle, t in motion_types.items() if t in ['e','o']]
orthogonalLines = []
for perpCycle in perp_by_NAC + deltoids + extra_cycles_orthog_diag:
orthogonalLines.append(Set([Set([perpCycle[0],perpCycle[2]]), Set([perpCycle[1],perpCycle[3]])]))
orthogonalityGraph = Graph(orthogonalLines, format='list_of_edges', multiedges=False)
n_edges = -1
while n_edges != orthogonalityGraph.num_edges():
n_edges = orthogonalityGraph.num_edges()
for perp_subgraph in orthogonalityGraph.connected_components_subgraphs():
isBipartite, partition = perp_subgraph.is_bipartite(certificate=True)
if isBipartite:
graph_0 = Graph([v.list() for v in partition if partition[v]==0])
graph_1 = Graph([v.list() for v in partition if partition[v]==1])
for comp_0 in graph_0.connected_components():
for comp_1 in graph_1.connected_components():
for e0 in Subsets(comp_0,2):
for e1 in Subsets(comp_1,2):
orthogonalityGraph.add_edge([Set(e0), Set(e1)])
else:
raise RuntimeError('A component of the orthogonality graph is not bipartite!')
self._orthogonality_graph = orthogonalityGraph
check_again = False
H = {self._edge_ordered(u,v):None for u,v in self._graph.edges(labels=False)}
self._set_same_lengths(H, motion_types)
for c in motion_types:
if not orthogonalityGraph.has_edge(Set([c[0],c[2]]),Set([c[1],c[3]])):
continue
if motion_types[c]=='a': # inconsistent since antiparallel motion cannot have orthogonal diagonals
return False
elif motion_types[c]=='p': # this cycle must be rhombus
self._set_two_edge_same_lengths(H, c[0], c[1], c[2], c[3], 0)
self._set_two_edge_same_lengths(H, c[0], c[1], c[1], c[2], 0)
self._set_two_edge_same_lengths(H, c[0], c[1], c[0], c[3], 0)
check_again = True
for c in motion_types:
if motion_types[c]=='g':
labels = [H[self._edge_ordered(c[i-1],c[i])] for i in range(0,4)]
if (not None in labels
and ((len(Set(labels))==2 and labels.count(labels[0])==2)
or len(Set(labels))==1)):
return False
if (orthogonalityGraph.has_edge(Set([c[0],c[2]]),Set([c[1],c[3]]))
and True in [(H[self._edge_ordered(c[i-1], c[i])]==H[self._edge_ordered(c[i-2], c[i-1])]
and H[self._edge_ordered(c[i-1],c[i])]!= None) for i in range(0,4)]):
return False
if check_again:
for K23_edges in [Graph(self._graph).subgraph(k23_ver).edges(labels=False) for k23_ver in self._graph.induced_K23s()]:
if MotionClassifier._same_edge_lengths(H, K23_edges):
return False
return True
[docs] @doc_index("General methods")
def possible_motion_types_and_active_NACs(self,
comments = {},
show_table=True,
one_representative=True,
tab_rows=False,
keep_orth_failed=False,
equations=False):
r"""
Wraps the function for consistent motion types, conditions on orthogonality of diagonals and splitting into equivalence classes.
"""
types = self.consistent_motion_types()
classes = self.motion_types_equivalent_classes(types)
valid_classes = []
motions = [ 'g','a','p','d']
if one_representative:
header = [['index', '#', 'motion types'] + motions + ['active NACs', 'comment']]
else:
header = [['index', '#', 'elem.', 'motion types'] + motions + ['active NACs', 'comment']]
if equations:
header[0].append('equations')
rows = []
for i, cls in enumerate(classes):
rows_cls = []
to_be_appended = True
for j, t in enumerate(cls):
row = [i, len(cls)]
if not one_representative:
row.append(j)
row.append(' '.join([t[c] for c in self.four_cycles_ordered()]))
row += [Counter([('d' if s in ['e','o'] else s) for c, s in t.items()])[m] for m in motions]
try:
active = self.active_NAC_coloring_names(t)
row.append([self.mu(name) for name in sorted(active)])
if self.check_orthogonal_diagonals(t, active):
row.append(comments.get(i,''))
else:
to_be_appended = False
if not keep_orth_failed:
continue
else:
row.append('orthogonality check failed' + str(comments.get(i,'')))
except NotImplementedError as e:
zeros, eqs = self.consequences_of_nonnegative_solution_assumption(
flatten([self.ramification_formula(c, t[c]) for c in t]))
row.append([eq for eq in eqs if not eq in zeros])
row.append(str(comments.get(i,'')) + str(e))
if equations:
zeros, eqs = self.consequences_of_nonnegative_solution_assumption(
flatten([self.ramification_formula(c, t[c]) for c in t]))
row.append([eq for eq in eqs if not eq in zeros])
rows_cls.append(row)
if one_representative:
break
if to_be_appended or keep_orth_failed:
valid_classes.append(cls)
if one_representative:
rows += rows_cls
else:
rows.append(rows_cls)
if show_table:
if one_representative:
T = table(header + rows)
else:
T = table(header + [row for rows_cls in rows for row in rows_cls])
T.options()['header_row'] = True
display(T)
if tab_rows:
return valid_classes, rows
return valid_classes
[docs] @doc_index("Constraints on edge lengths")
def motion_types2equations(self, motion_types,
active_NACs=None,
groebner_basis=True,
extra_eqs=[]):
r"""
Return equations enforced by edge lengths and singleton active NAC-colorings.
"""
if active_NACs==None:
active_NACs = self.motion_types2active_NACs(motion_types)
eqs_same_lengths = self.motion_types2same_lengths_equations(motion_types)
eqs = flatten([self.equations_from_leading_coefs(delta, check=False,
extra_eqs=eqs_same_lengths + extra_eqs)
for delta in active_NACs if delta.is_singleton(active_NACs)
])
if groebner_basis:
return ideal(eqs).groebner_basis()
else:
return eqs
[docs] @doc_index("General methods")
def degenerate_triangle_equation(self, u, v, w):
r"""
Return the equation for a degenerate triangle.
"""
return self.lam(u,v) - self.lam(u,w) - self.lam(w,v)
[docs] @doc_index("Constraints on edge lengths")
def motion_types2same_lengths_equations(self, motion_types):
r"""
Return the equations for edge lengths enforced by motion types.
"""
eqs = []
for c, motion in motion_types.items():
if motion=='a' or motion=='p':
eqs.append(self.lam(c[0], c[1]) - self.lam(c[2], c[3]))
eqs.append(self.lam(c[1], c[2]) - self.lam(c[0], c[3]))
elif motion=='o':
eqs.append(self.lam(c[0], c[1]) - self.lam(c[1], c[2]))
eqs.append(self.lam(c[2], c[3]) - self.lam(c[0], c[3]))
elif motion=='e':
eqs.append(self.lam(c[1], c[2]) - self.lam(c[2], c[3]))
eqs.append(self.lam(c[0], c[1]) - self.lam(c[0], c[3]))
return [eq for eq in ideal(eqs).groebner_basis()] if eqs else []
[docs] @doc_index("Constraints on edge lengths")
def graph_with_same_edge_lengths(self, motion_types, plot=True):
r"""
Return a graph with edge labels corresponding to same edge lengths.
INPUT:
- `plot` -- if `True` (default), then plot of the graph is returned.
OUTPUT:
The edge labels of the output graph are same for if the edge lengths
are same due to `motion_types`.
"""
H = {self._edge_ordered(u,v):None for u,v in self._graph.edges(labels=False)}
self._set_same_lengths(H, motion_types)
G_labeled = Graph([[u,v,H[(u,v)]] for u,v in H])
G_labeled._pos = self._graph._pos
if plot:
return G_labeled.plot(edge_labels=True, color_by_label=True)
else:
return G_labeled
[docs] @doc_index("Constraints on edge lengths")
def singletons_table(self, active_NACs=None):
r"""
Return table whether (active) NAC-colorings are singletons.
"""
rows = [['NAC-coloring', 'is singleton']]
if active_NACs==None:
active_NACs = self._graph.NAC_colorings()
only_active = False
else:
only_active = True
rows[0].append('is singleton w.r.t. active')
for delta in active_NACs:
rows.append([delta.name(), delta.is_singleton()])
if only_active:
rows[-1].append(delta.is_singleton(active_NACs))
T = table(rows)
T.options()['header_row'] = True
return T
[docs] @doc_index("System of equations for coordinates")
def edge_equations_ideal(self, fixed_edge, eqs_lamdas=[], extra_eqs=[], show_input=False):
r"""
Return the ideal of equations for coordinates of vertices and given edge constraints.
"""
equations = []
for u,v in self._graph.edges(labels=False):
equations.append((self.x(u)-self.x(v))**_sage_const_2 + (self.y(u)-self.y(v))**_sage_const_2 - self.l(u,v)**_sage_const_2)
equations += [
self.x(fixed_edge[0]),
self.y(fixed_edge[0]),
self.y(fixed_edge[1]),
self.x(fixed_edge[1]) - self.l(fixed_edge[0], fixed_edge[1]),
] + [
self._ring_coordinates(eq) for eq in list(eqs_lamdas) + list(extra_eqs)
]
if show_input:
for eq in equations:
show(eq)
return ideal(equations)
[docs] @doc_index("General methods")
def edge_lengths_dimension(self, eqs_lambdas):
r"""
Return the dimension of the variaty of edge lengths.
"""
return ideal(eqs_lambdas + [self.aux_var]).dimension()
[docs] @doc_index("Other")
def edge_lengts_dict2eqs(self, edge_lengths):
r"""
Return equations with asigned edge lengths.
"""
return [self.lam(e[0],e[1]) - QQ(edge_lengths[e]) for e in edge_lengths ]
[docs] @doc_index("General methods")
def edge_lengths_satisfy_eqs(self, eqs, edge_lengths, print_values=False):
r"""
Check if a given dictionary of edge lengths satisfy given equations.
"""
I = ideal(self.edge_lengts_dict2eqs(edge_lengths))
if print_values:
print([(eq.reduce(I)) for eq in eqs])
return sum([(eq.reduce(I))**2 for eq in eqs])==0
[docs] @staticmethod
@doc_index("Other")
def show_factored_eqs(eqs, only_print=False, numbers=False,
variables=False, print_latex=False,
print_eqs=True):
r"""
Show given equations factored.
"""
for i, eq in enumerate(eqs):
factors = factor(eq)
if numbers:
print(i)
if variables:
print(latex(eq.variables()))
if print_latex:
print(latex(factors) + r'=0\,, \\\\')
if print_eqs:
if only_print:
print(factors)
else:
show(factors)
[docs] @staticmethod
@doc_index("General methods")
def is_subcase(eqs_a, eqs_b):
r"""
Return if `eqs_a` is a subcase of `eqs_b`, i.e., the ideal of `eqs_a` contains the ideal of `eqs_b`.
"""
I_a = ideal(eqs_a)
for eq in eqs_b:
if not eq in I_a:
return False
return True
[docs] @doc_index("Other")
def motion_types2tikz(self,
motion_types,
color_names=[]
, vertex_style='lnodesmall',
none_gray=False,
):
r"""
Return TikZ code for the graph with edges colored according to the lengths enforced by motion types.
"""
H = {self._edge_ordered(u,v):None for u,v in self._graph.edges(labels=False)}
self._set_same_lengths(H, motion_types)
edge_partition = [[e for e in H if H[e]==el] for el in Set(H.values()) if el!=None]
if none_gray:
edge_partition.append([e for e in H if H[e]==None])
else:
edge_partition += [[e] for e in H if H[e]==None]
if color_names==[]:
color_names = ['edge, col{}'.format(i) for i in range(1,len(edge_partition)+1)]
if none_gray:
color_names[-1] = 'edge'
self._graph.print_tikz(colored_edges= edge_partition,
color_names=color_names[:len(edge_partition)],
vertex_style=vertex_style)
__doc__ = __doc__.replace(
"{INDEX_OF_METHODS}", gen_thematic_rest_table_index(MotionClassifier))